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Test of the semischematic model for a liquid of linear molecules

Linda Fabbiart, Rolf Schilling? Francesco SciortinbPiero Tartaglid, and Christoph Thefs
IDipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Univérsitd/Roma “La Sapienza,”
Piazalle Aldo Moro 2, 1-00185 Roma, Italy
2nstitut fir Physik, Johannes Gutenbergniversita, Staudinger Weg 7, D-55099 Mainz, Germany

(Received 27 March 1998; revised manuscript received 22 June 1998

We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to
describe the center of magSOM) slow dynamics of a network-forming molecular liquid. We compare the
theoretical predictions and numerical results from a molecular-dynamics simulation, both for the time and the
wave-vector dependence of the COM density-density correlation function. We discuss the relationship between
the presented analysis and the results from an approximate solution of the equations from molecular mode-
coupling theony[R. Schilling and T. Scheidsteger, Phys. Re\6@&; 2932(1997)]. [S1063-651X98)08311-1

PACS numbds): 61.20.Gy, 64.70.Pf

[. INTRODUCTION In the long term, the exact solutions of the MMCT equa-
tions are to be preferred because they do not requiradan

The mode-coupling theor¢MCT) [1,2] has opened new hocestimate of the translational-rotational coupling and pre-
perspectives in the theoretical understanding of the dynamidict also the behavior of the angular correlators. On the other
slowing down characteristic of supercooled glass-forminghand, in the short term the semischematic equations are
liquids [3]. MCT, originally developed to describe the struc- rather appealing because of their simplicity, for the minimal
tural relaxation in simple liquids, i.e., in liquids composed by amount of input information required and because the com-
particles interacting via spherically symmetric intermolecularplete time-dependent solution can be achieved with present-
potentials, also offers a coherent picture of the slow dynamday computational facilities. Also, once the ability of the
ics in molecular glass forming liquids, composed of asym-semischematic model to describe the time evolution of the
metric molecules. The ability of MCT to model the onset of COM correlation functions has been assessed by detailed
slow dynamics in molecular liquids has prompted the need t¢omparison with MD simulations, comparison with experi-
extend the theory to fully take into account the angular demental data is foreseeable, again due to the limited need for
grees of freedom. The extension of MCT to a solute lineastructural input. For this reason, in this paper we solve the
molecule in a solvent of spherical particlp$] and to mo- Semischematic model for a system of linear dumbbells inter-
lecular liquids[5,6], which we refer to in the following as acting through a Lennard-Jonés)) potential and compare
molecular MCT(MMCT), has been recently achieved. The the predictions of the model with the corresponding quanti-
Center-of-masiCOM) density-density correlation function, ties evaluated from Iong MD simulations of the same |IQU|d
which in MCT is the only relevant correlation function, in [9]. The choice of a liquid of dumbbells for which the
MMCT becomes coupled to an infinite hierarchy of rota- MMCT equations have been previously solved approxi-
tional correlation functions, arising from the expansion of themately[7] allows at the same time a comparative discussion
angular degrees of freedom in spherical harmonics. Théf the two theoretical methods.
MMCT equations for COM and angular correlators have
been solved until now for systems of linear molecules under Il. THEORY
specific approximationg5—7]. Work is currently underway . . . i . o
to improve the approximations for dumbbells and to calcu- |N€ Semischematic model is defined by introducing in the
late a solution for the general case of molecules of arbitraryd€@l MCT equations for simple liquids an effective coupling
shape. parameteryg Whlqh models the caging ef_fect_of the molequ—

Recently, some of us proposed a parametrization of théar rotational motion on th(_a CQM dynamics, i.e., the slowing
role of the rotational degrees of freedom and their effectivélown of the COM relaxation introduced by the angular de-
coupling with the COM density8]. This approach, which grees_of freedom. _The resu[tlng system of mtegrodlffer(_antlal
provides a solvable set of coupled equations for the slovfduationd8] describes the time evolution of the normalized
dynamics of the COM density-density correlation function,density-density  COM  correlation  functions ¢q(t)

has been namesemischematibecause it retains all the = Sq(t)/Sq, S¢(t) being the dynamic structure factor
dependence of the COM correlators but condenses the cou- 1

p_llng bet_ween COM and angular correlaﬂpn functlons_ into a Se(= < (pq(1)* pg(0)) 1)
single g-independent parametgt;. A detailed comparison N

between the theoretical predictions of the model and results

from a molecular-dynamicéMD) simulation has been per- andS;=S,(0) the static structure factor. The unknowp is
formed for a network forming liquifi8], finding an excellent fixed once and for all by requiring that the ideal glass tran-
agreement up to a cutoff-vector value where the micro- sition temperature in the modﬂ"cT coincides with the tem-
scopic geometric details become dominant. perature calculated from the analysis of experimental or MD
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data. The imposed equality of the theoretical and MD tem- The infinite time limitf, of ¢4(t) can be calculated solv-
peratures is very important because it allows us to comparig self-consistently on a discrete setgpfalues the coupled
the numerical and the MD data at the same refer@ndee.,  integral equations

with the same structure factor and the same thermal broad-

ening[10]. A larger value ofyr corresponds to a stronger fq —my ] )

slowing down of the COM relaxation due to the interaction (1-1g) Stk

with the rotational motion. Ifyg=1, the semischematic

model coincides with the standard MGT]. using as input the number densityand S; which can be
The physics described by the semischematic model is thealculated from the MD data or measured experimentally.

same as for the ideal MCT. It predicts that wHEBR TVCT, Having chosenyr properly, at the ideal glass transition

b4(t) does not relax to zero at long times and the COMtemperature the solutioh, of Eq. (5) jumps discontinuously

dynamics is frozen. Abov@MCT | the correlatorg(t) de- from Zero to a nonzero value, which defines the crl_tlcal non-

cays with a typical two-step relaxation process, characterize@rgodicity parametefg [1,2]. In what follows, we will ne-

by the fast decay to a plateau val(tee nonergodicity pa- 9dlect the upper index in the nonergodicity parameter.

rametey followed by a slow relaxation to zer@ relaxation In the supercooled liquid phase, after the plateau of height

which gets slower and slower a&'°T is approached. fq, ¢q(t) follows an initial power-law decayvon Sch-
The semischematic model describes the dynamic evolueidler law, ruled by ag-independent scaling exponeint

tion of ¢,(t) in the time region where the slow dynamics foI_Io_wed by a stretched exponential relaxatigéohlrausch-

becomes dominaritx region by the system of coupled equa- William-Watts law:

tions, K
K t\~Pq
. . d (i A bq()~Aq €x —<3> : (6)
d’q(t):mq(t)__,\ J’ dSIT[](t—S)qu(S), 2 a
dt JO

The range of validity of the von Schweidler law is strongly
dependenf12] and, therefore, it is worthwhile to consider
where the time variablé is defined in terms of a character- also the second-order corrections:
istic time scale which diverges &tY°T [1]. The memory
function m, is a quadratic functional of the correlations bo(t)~F,—hD
$q(1) themselves, d a a

2b
+0((t/n%®). (7)

b
8 holt
T a\r

The exponenb can be calculated solving
N T iT2)

d*
(2m)°

o out]- 2 |
®)

and its increase on cooling is responsible for the slowing ) ]
down of the relaxation process. The parametgrenters in ~ WhereTI' is the Euler gamma function and tlesponent pa-
Eq. (3) as ag-independent multiplicative factor, thus increas- "ameterx is defined by
ing the strength of the COM memory function.

The vertices in Eq(3) are defined as A

1 (= % % 5°m

_ 1 _£\2aC__ A a4 2.C

. fo oquO dkf0 dpe(1-fy) St (1—fp)%E.
9

. 1
V(a,K)=SSSg-k— X . .
ng In Eq. (9), e® ande® are the right and left eigenvector cor-

- PR 1o responding to the maximum eigenvalue of the stability ma-
X[G-KA-S M+ (G-K(1-S )12 (@) g

smq[fo]
5F,

and are functions of the COM, and inversely proportional
to the density.

Note that Eq.(2) ignores the bare transport coefficient as
well as the phonon frequencies. Such approximation is moevaluated at the critical point. The critical amplituld[é) is
tivated by the structure of the MCT equations, which in the
vicinity of the critical temperaturgl] become scale invari- hyY=(1—1fg)% (12)
ant. In this paper we will compare data calculated from MD
simulations with the corresponding theoretical quantitieswhile hff) is calculated theoretically according to the correc-
evaluated close to the ideal glass transition temperatureion formulas to the asymptotic laws reported in Ré£)].
where any information on the bare transport coefficient and In Sec. IV we present the solution of the static and dy-
on the phonon frequencies drops out. Recently, this theoretramic equations reported above for a liquid of linear mol-
ical prediction has been subjected to an accurate test in Redcules. Some of us have recently solved the problem of the
[11] where it has been shown that the slow dynamics close testimation of the ideal critical temperature and of the calcu-
T. is the same for both Newtonian and stochastic microdation of the corresponding nonergodicity parameter for the
scopic dynamics. liquid under investigation solving the MMCT equations

Caulfpl= (1-1f)? (10
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within some suitable approximatiof,7]. We thus show in 1.0
Sec. IV a comparison between the predictions of MMCT for
the slow relaxation in a liquid of linear molecules and the

— — Molecular MCT, T=0.310

corresponding predictions of the semischematic model. 0.8 ==~ Molecular MCT, T=0.383
To facilitate the reading of the present paper, we presen & MD, T=0477
here a brief outline of the MMCT for linear molecules. We 06 Semischematic, T=0.477

refer the interested reader to Ref5-7).

According to MMCT, the relevant variables for the de- «~
scription of the slow dynamics of supercooled molecular
glass forming liquids are the generalized correlation func-
tions

Semischematic, T=0.310

0.4

1
S]Tl(qit):N<p|m(qvt)*p|’m(q10)>= (12)

where the density functions are defined by

q

N
> . id.x FIG. 1. COM nonergodicity parametéy as calculated by solv-
—il ig-x;(t) .
Pim(Q, ) =i 4771-21 e"n Y'm(QJ(t))' (13 ing Eqg. (5) (solid ling) and as evaluated from the MD simulations
[9] (symbols. For comparison also the COM nonergodicity param-
In Eq. (13) the sum runs over thN molecules of the liquid eters as predicted by MMCT are reported at two different tempera-

> . ;. . tures(dashed lines The dotted line shows$, as predicted by the

X; is the COM position of thgth m0|ecyle’ and'i({);) are semis(chematic m)f)del dt=0.310. The unitqoiq isl?a;j while)f[he

the spherical harmonics for its Euler's gnglgs. The intlex unit of temperature ig » (settingks=1). The MMCT curves are
ranges over the whole set of non-negative integer numberg, . ref. [6].

while me[—1,l]. Forl=I1"=0 the correlation function de-

fined in Eq.(12) coincides with the COM correlatd, stud-

ied by the usual MCT and the semischematic model. Due tde solved on varying the temperature. The model predicts the
the lack of rotational invariance of the molecules, the corre€existence of a completely ergodftquid) phase down to a
lation functions depend both on modulus and orientation otritical temperaturelMCT=0.383 where the COM dynam-
the wave vector. In Eq(12) we have chosen a reference ics runs into a nonergoditglassy phase while the angular
frame Where(fi points in the direction of the axes, which dynamics is still liquidlike. On lowering the temperature fur-
offers the advantage of diagonality of the correlators withther, a second critical temperatuf™“™ appears, character-
respect tom. The evolution equations for the correlators in ized by the freezing of both angular and COM dynamics.
Eq. (120 are a generalization of Eq(2) for a single This splitting of critical temperatures is an artifact of the
g-dependent correlator. The slowing down of the relaxatiordiagonalization approximation and is not observed when the
is ruled by an infinite set of memory functions approximation #1’ is waived, at least for the static correla-
[M[".(q,t)]**" which are quadratic functionals of the whole tors[13]. Indeed, in the analysis of the MD simulation, ro-
set of correlatorg12). The extra indicesy,a’ e {T,R} are tational and translational critical temperatures coincide, as

related to projection operations on the longitudinal transla-_discussed in Sec. Ill. This unphysical splitting of the theoret-

tional (T) and rotational R) currents. For the aims of this Ic8l critical_temperatures implies that, for temperatures
paper we underline that in MMCT the time evolution of eachhigher thanT =", MMCT in the diagonalization approxi-
correlator is coupled, through the memory functions, to ey nation is completely equivalent to the ideal MCT for simple

ery other correlator. This means that, due to the dependendduids, since the angular dynamics does not contribute to the
of [Mgo(q £)]7T on both the translational and rotational cor- slowing down of the relaxation. For this reason, the theoret-

relators, the dynamics of the COM correla(q,t) is af- ical COM critical temperatur@MCT is 25% lower than the
fected by the time evolution of every angular correlation

numerical critical temperaturé:® .
function Sﬂ]r(q’t) with 11" £0. _ In F|g 1 we show the result($r8m Ref.[6]) for_the Ion_g
time limit of the COM correlatoSy,(q,t) (normalized at its
t=0 value for the two different critical temperaturdshort
and long dashed lingsFor T>TMMCT the COM correlator
. m m I decays to zero in a finite time interv@rgodic phase while

Lo e, SI,(q,,t)man,ST(q,t) and  [M;(q.1)] at TMMCT its infinite time limit jumps to a nonzero value,
~ 3 [M[(q,))]** [7]. We stress that this diagonality was namely the nonergodicity parameti, The rotational dy-
also demanded for the static correlat&$(q), in order to  namics is still in a liquid phase, i.e., all the angular correla-
keep the MMCT equations as simple as possible. The inpubrs vanish in the long time limit until the temperature is
of the calculations are the number density of molecules antbwered down toTMCT | At TMMCT ' the transition for the
all the diagonal static structure factd8§(q) up tol=2 as  angular correlators occurs and the angular dynamics starts to
evaluated from the set of MD dafg]. contribute to the nonergodicity parameter. This means that

In this approximation scheme the MMCT equations foralso the angular correlators contribute to the structural arrest
the long time limit of the COM and angular correlators canof the COM dynamics. From a mathematical point of view,

With the cutoff <2, the nonergodicity parameters
fl'(a)=lim._.. SJ'(q,t)/S'(q) have been calculated for the
liquid of LJ dumbbells in the approximation of diagonality in
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at TMMCT the angular correlators start to play a role in the 40 —

calculation of the COM memory functidiMy(q,t)]"". The i

long dashed line in Fig. 1 represents the infinite time limit of w207 L

the normalized COM correlator. We underline that, at R
TMMCT ' the COM is in a deep glassy phase and the long time g'g = ‘

limit of Sgo(q,t) is therefore higher than the critical noner-
godicity parameter. All the details of the calculation, both for

the angular and COM quantities, can be found in Ref. 04

0.0

IlIl. MODEL AND SIMULATION DATA

The model under investigation is a one-component system =
containingN= 500 rigid diatomic molecules. Each molecule ‘ ‘ ‘ ,
consists of two atoms, labeledd andB, separated by a dis- o 5 10 15 20 25
tanced. The interaction between two molecules is built up q

by pair interactions between the atoms, which are due to the
LJ potentials, FIG. 2. Critical amplitudesii? andh{? in the von Schweidler

law Eq. (7) as predicted by the semischematic mog@sllid lineg
and as calculated from the MD dasymbols. The static structure
factor S, used as input of the theoretical calculation is also shown.
((raﬁ) 12 (o’aﬁ)T The unit ofq is 27osx .
r )

Vaﬁ(r):4EaB
e (T=T¢P) 7Y, Dx(T-TYP)” (15)
a,BeiA B} (14 and it was found to b@MP=0.477. The numerical values
for the nonergodicity parametdy,, the critical amplitude
with LJ parametersesa=eag=1.0,e55=0.8 and on, h{, and the second-order correctibff at the critical tem-
=oap=1.0,055=0.95, i.e.,ean Was chosen as the unit of peratureT "*=0.477 are also taken from R¢€]. They were
energy and temperaturkd=1) and o, as the unit of evaluated by fitting the decay from the plateauig(t) with
length. The unit of time is theﬁgiAm)/MgéAA)]l/Z, where the von Schweidler law Eqz7), including the second-order
m is the mass of an atom which is chosen to be equal foforrection. From the same procedure the critical exponent
both types of atoms. The slight head-tail asymmetry of thd®=0.55 is also obtained and, via E@), one gets for the
dumbbell assures, together with the choicedef0.5 as in-  €xponent parametex the resultA =0.76. Furthermore, we
teratomic distance, a good coupling between translationdlave examined the time dependence of the MD co&relator
and rotational motion on the one hand, and avoids crystalli¢q(t) in the a region by evaluating the amplitudes, ,
zation into a liquid crystalline phase and the intersection oftretching exponentgq, and relaxation timesr; of a

two dumbbells on the other. Kohlrausch-Williams-Watts fifEqg. (6)].
After equilibrating the system in theN(p,T) ensemble
for times which exceeded the relaxation times of the system IV. RESULTS

even at the lowest temperature, the production runs were
carried out in the microcanonical ensemble. To improve the We solve for the liquid of LJ dumbbells the semische-
statistics, the data for each temperature were averaged ovéatic equations introduced in Sec. Il using as input for the
at least eight independent runs. Further details about thealculation the static structure fact§g as obtained from the
simulation can be found in Ref9], from which we take part Simulation (Figs. 2 and 3 and the COM number density
of the data to be compared with the theoretical results. n=0.719 atTMP=0.477. We solve Eq5) on a grid of 300

In the frame of MCT, the presence of a critical tempera-equispacedq values extending up toqoaa=25. This
ture affects thelT dependence of several observables. Foig-vector range covers about four times the position of the
example, the Debye-Waller factors are predicted to show &rst peak in the stati§, and extends up to the region where
square root singularity a;. The a-relaxation times for all S, has practically reached its asymptotic value of 1. Pub-
possible correlators coupled with the density fluctuations follished work on the hard-sphere systéf8,12] has shown
low a power law in|T—T,| on approachind . from above. that the results are not affected by the mesh size if the shape
Close toT., the power law crosses to an activated dynamicf the structure factor is well resolved and the range extends
law due to the increased relevance of the hopping processesp to values such th&,=1.
These behaviors can be used to estimate from the MD data We find that the conditiom ¥“"=TMP fixes the value of
the location of the critical temperatuﬁi%"D, as shown, for yg to 1.17, which suggests that the coupling between COM
example, in Refs[14-16,9,1T. and angular degrees of freedom in LJ dumbbells increases

In the present case, the critical temperature for the COMhe COM memory function about 20%. If compared to the
was determined from the simulation by fitting the- value yg=1.93 found for SPC/E wat€f8,17), this result
relaxation time and the diffusion constdhtwith power laws  highlights the weaker hindering effect of the rotational mo-
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4.0 In Fig. 2, we present a comparison between the theoretical
predictions of the semischematic model for the critical am-
plitudesh{" andh{* and the same quantities as calculated
0.0 ot Ne- by fitting Eq. (7) to the density-density correlation functions,
L0 i.e., with a quadratic fit in®. The fitting coefficient("/ 7°
IR and h{?/7?* can be compared with the theoretlcal critical
m<" 05} //\/_\ amplltudes after fixing, once and for all, tleindependent
time scaler, introduced by the scale invariance of EQ).
0.0 The agreement is satisfactory in a wide rangegofalues.
0.9 The theoretical value for the exponent parameter, as calcu-
— T —— ] lated from Eq.(9), is A=0.63, to be compared with
<. 06 MM =0.76 as obtained by the simulation, i.e., the difference be-
tween the two is about 15%. This yields a theoretical critical
exponentb=0.75, while the exponent calculated from MD

0.3

1.5 data isb=0.55. In the case of SPC/E water, the theoretical
. Loy and MD values ofb coincide within the numerical error.
““ 05| ] Such a finding is consistent with the remarkable agreement
0.0 ; of the nonergodicity parameters over both the relevant peaks
0 5 10 15 of the structure factor.
q The comparison between MD data and the prediction of

the semischematic model can be extended to the long time

FIG. 3. AmplitudeA] , stretching exponengg, and relaxation  region. We solve the complete dynamic set of E}.in the
time Ts in the Kohlrausch-William-Watts law Ed6). Lines are  \hole g range[19].
obtaingd fitting Eq(6) to the exact '[.ime-dependent solution of Eq. e fit the stretched exponential I4&g. (6)] to the long
(2) while symbols are evaluated fitting the same law to the MDyime relaxation(late « region and we compare the obtained
data. The MD time unit forrg is 107 (o4 sm)/(48ex,) 1" while the amplltudeAK, relaxation timer , and stretching exponent
MCT relaxation times are arbitrarily scaled. The unit gfis
Zmr;j. The static structure factor is shown as a reference. '8 with the corresponding quam'tles as calculated by fitting

the MD relaxation. The comparison of the completale-
pendence of\f, 7 , and B} is shown in Fig. 3. The theo-
tion in a liquid of LJ linear molecules with respect to the retical and numerical relaxation times are in perfect agree-
strong one observed in a hydrogen-bonded network-formingnent. Less satisfactory, as in the case of water, is the
liquid. In water, the highly energetic hydrogen bonds buildtheoretical prediction fo;@q for which the theory provides
up the network structure which is responsible for the caginghe correct qualitative dependence, but failing in amplitude
of the molecules in the glass phase. The motion of the COMip to 30%. The error in the values of the stretching expo-
of the molecules is completely dependent on the breakingents is expected on the basis of the drastic simplification
and reforming of the hydrogen bonds, i.e., it is definitelyadopted in the semischematic approach, which condensates
correlated to the angular dynamics. the coupling between the infinite set of angular correlator

The solution of Eq(5) for xyg=1.17 as a function of the and the COM correlator. Indeed, in phenomena in which the
wave vectorq is shown in Fig. 1 together with the COM decay of correlation results from the sum of several indepen-
nonergodicity parameters as calculated from the MD datadent relaxation processes, a smajeindicates a wider dis-
The theoreticaf ; oscillates in phase with the MD data, but tribution of relaxation timeg20]. As expectedAg has the
underestimates the amplitude, especially at largectors. same behavior af, both for theory and simulation.

Although the phase relation betwegpandS; may seem The choice of the dumbbell liquid is particularly interest-
at a first glance a trivial effect of using, as input in the ing because it allows a comparison between the theoretical
theory, we stress that thg, value at wave vectog is con-  predictions of the semischematic model and those of MMCT,
trolled by Eq. (2) and thus it is the result of a three- which provides a deeper understanding of the basic approxi-
dimensional integration which involves the entigjedepen- mation in the model, i.e., the assumption that the coupling
dence ofS;. between the COM and angular degrees of freedom can be

The shoulder aroung= 3, which may be attributed to the quantified in a multiplicativeg-independent factogg. The
rotational-translational coupling, as the orientational cor-comparison requires a certain degree of care, because of the
relator S2,(q) has a maximum at thig, is also underesti- difference in the theoretical estimate &M"T, rather dif-
mated. This notwithstanding, the semischemégjicaptures ferent fromT[l,"D. Indeed, while in the case of the semische-
the g dependence of the nonergodicity parameter as calcunatic model the MD and the theoretich| are evaluated at
lated from the MD data. the same temperature, in the case of MMCT the nonergod-

The simplicity of the semischematic equations allows uscity parameters are calculated using as inputs the structure
to study, besides,, also the complete time relaxation of factors from the simulationsut evaluated at temperatures
¢4(t). According to the theoretical predictions outlined in different fromT'\’ID
Sec. Il, we calculate the critical amplltudbg) andhff) and Since in the diagonal approximation of MMCT, for
the exponenb which rule the earlya-relaxation behavior T>TMMCT the angular correlators decay to zero, they do not
[Eq. (7)]. contribute to the structural arrest of the COM dynamics. The
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A the complete time evolution of the COM correlator can be
': calculated with current computational resources.
R | -
é I Semischen,r)lalic
= T=0.310 == MMCT M (q) V. CONCLUSIONS
£ A theoretical (but relatively simplg¢ description of the
@ 10 . . . Ly -
g COM dynamics in a molecular supercooled liquid is a rel-
% evant task which has recently attracted a lot of attention. The
@ situation recalls the early days of the MCT for simple lig-
uids, when the dynamical equations were known but the ex-
0 act numerical solutions were too difficult to handle. In that

situation, simple approximations giving rise to a solvable set
q of equations were proposed and carefully studied. This class
of approximations, which is still extensively used to interpret
FIG. 4. COM memory function as predicted by the semische-experimental results in a simple wg31,22, arises from the
matic model Eq.(3) (solid liné) and by MMCT (dashed lingat — pasjc assumption that tiedependence d§, can be reduced
T, _ =0.310. _The lJIllt ofy is 2mo,, While the unit of tempera- g 5 single representativg, vector, i.e.,S,* 8(q— qo) [23].
ture is ean (settingkg=1). In this approximation, which is called tteehematic model
the q dependence is abandoned in favor of an exact descrip-
tion of one or two representative correlators. In the same
underestimated coupling between translational and rotationaipirit, thesemischematimodel provides a method for study-
degrees of freedom, introduced by the diagonal approximaing the completey dependence of the COM dynamics, ne-
tion, is compensated by a decrease of the ideal glass tranglecting the angular degrees of freedom which are condensed
tion temperature frorT ¥'° to TY™T. On the other hand, in In a singleg-independent parametgz.
the semischematic model, by using the couplipg as an Notwithstanding the drastic approximation intrinsic in the
additional parameter in the theory, it is possible to mimic theP™oPosed approach, we have shown in this paper that the

role of the angular correlators in increasing the strength ofr;oglel ca:jpt(l;res the fesstential ip?r:edgathjl quhd?pendTehnt
the COM memory function alf ™ without the need of Satc and dynamic teatures ot the relaxation. he

changing the ideal glass transition temperature. As can b redicted nonergodicity parameter, relaxation time, and
ging 9 P ' tretching exponent oscillate in phase, the critical amplitudes

seen from Fig. 1, the two app_ro_aches converge to equivaler&lt of phase, with the COM structure factor, i.e., the model
resuilts fo_r the COM nonergo_d|C|ty para_me(eohd gnd short predicts the same qualitative behavior observed in the simu-
dashed linesbut with a considerable difference in the com- lation. The quantitative agreement with the MD data ffigr

putational times requested. 1) n2) : : .
A better insight into the comparison between the different Iqo s’ehtqo t’h:nrg;%nlqsu;ag;fac\t\?ﬁé fr?ges(t::zltlghifr?q ;’sc(t)?:m
theoretical approaches can be performed studying the none¥; q’ g exp

godicity parameter as predicted by the semischematic modélk is overestimated. This reﬂgcts the majqr vyeakness of the
at TYCT  Keeping fixed once and for all the coupling, approach but at the same time clearly indicates the role
; .

, ! played by the angular degrees of freedom in controlling the
=1.17, we can solve Ed5) with the memory function EQ. gynamical evolution of the center of mass. If the present
(3). With this choice of temperature the COM dynamics iS in ghqeryations are discussed together with the semischematic
a deep glassy phase, both in the semischematic and MMC15vsis of the dynamics of SPC/E water, a model which
descriptions. Thus, being in a nonergodic phase, the CONyimics 4 liquid of strong directional hydrogen bonds, it be-
dynamic structure factor has a finite long-time limit, which is .o a5 obvious that the value &t is a measure for the
shown in Fig. 1. The semischemationg dashed lineand strength of the rototranslational coupling.

MMCT (dotted ling predictions are in perfect agreement. 11,4 comparison between the semischematic model and
'_rhis r_es_ult can be iIIus_trated by the comparison_ of the longhe MMmCT approximate solutions for the COM nonergodic-
time limits of the semischematic memory functiam, and v harameter and memory function also supports the validity
the COM MMCT memory functiofMJ((a)]™" at T™T  of the assumption of @-independentyr. Moreover, the
(Fig. 4). We recall that the angular correlators contribute tocoincidence of the theoretical critical and the MD one
[Mgo(q)]TT as well as the COM correlator, while the semi- allows for precise comparisons between theory and experi-
schematiam, is ruled only by the COM5,, and the value of ~ments. Different from the MMCT, the only required input in
Xr- Thus, the semischematic model gives rise to the comthe model is the COM5,, a quantity which can be experi-
plete functional dependence of the COM memory functionmentally measured by suitably designed neutron or x-ray
on the rotational relaxation in a very simple way, i.e., takingscattering experimen{24].

into account only the functional dependence on the COM

correlator and summarizing all the remaining coupling in the

effective yg. This means that the COM dynamics predicted ACKNOWLEDGMENTS

by the semischematic model almost coincides with the cor-

responding predictions of MMCT in the diagonalization ap- R.S. and C.T. gratefully acknowledge financial support by
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